15 research outputs found

    Ceramic composition at Chalcolithic Shiqmim, northern Negev desert, Israel: investigating technology and provenance using thin section petrography, instrumental geochemistry and calcareous nannofossils

    Get PDF
    Technological innovations in ceramic production and other crafts are hallmarks of the Chalcolithic period (4500–3600 BCE) in the southern Levant, but details of manufacturing traditions have not been fully investigated using the range of analytical methods currently available. This paper presents results of a compositional study of 51 sherds of ceramic churns and other pottery types from the Chalcolithic site of Shiqmim in the northern Negev desert. By applying complementary thin section petrography, instrumental geochemistry and calcareous nannofossil analyses, connections between the raw materials, clay paste recipes and vessel forms of the selected ceramic samples are explored and documented. The study indicates that steps in ceramic manufacturing can be related to both technological choices and local geology. Detailed reporting of the resulting data facilitates future comparative ceramic compositional research that is needed as a basis for testable regional syntheses and to better resolve networks of trade/exchange and social group movement

    The Iron Age copper industrial complex: A preliminary study of the role of ground stone tools at Khirbat en-Nahas, Jordan

    Get PDF
    The first industrial revolution in the southern Levant crystallized during the Iron Age when copper production reached scales never before seen in this part of the Middle East. Ever since copper ore was first smelted during the Chalcolithic period, the Arabah valley, and its widespread distribution of copper mineralization, was the main source for copper ore in the region. The main ore deposits are located in Timna (Israel) in the southern part of the valley, and some 105 km to the north, in the Faynan region (Jordan). Faynan is the largest copper ore resource zone in the southern Levant. Excavations at the Iron Age Faynan site of Khirbat en-Nahas and the recent final publication of that project have revealed peaks in industrial-scale production during the 10th and 9th centuries BCE. However, the role of ground stone tools in the Iron Age copper industry in Faynan has not been systematically presented. This paper presents a preliminary study of the ground stone assemblage from one excavation season at Khirbat en-Nahas, thereby highlighting the great potential for ground stone tools research at the site. Using the chaîne opératoire method of technological study, this paper takes a quantitative approach to the typological, material, and spatial distribution of ground stone artefacts at Khirbat en-Nahas to understand their role in copper production. Ethnoarchaeological study of hereditary bronze casting workshops in southern India provides a compelling model of how ground stone tools played a critical role in one of the most important dimensions of metal production in all periods - recycling - in an Iron Age copper factory

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Googling the Grey: Open Data, Web Services, and Semantics

    Get PDF
    Primary data, though an essential resource for supporting authoritative archaeological narratives, rarely enters the public record. Lack of primary data publication is also a major obstacle to cultural heritage preservation and the goals of cultural resource management (CRM). Moreover, access to primary data is key to contesting claims about the past and to the formulation of credible alternative interpretations. In response to these concerns, experimental systems have implemented a variety of strategies to support online publication of primary data. Online data dissemination can be a powerful tool to meet the needs of CRM professionals, establish better communication and collaborative ties with colleagues in academic settings, and encourage public engagement with the documented record of the past. This paper introduces the ArchaeoML standard and its implementation in the Open Context system. As will be discussed, the integration and online dissemination of primary data offer great opportunities for making archaeological knowledge creation more participatory and transparent. However, different strategies in this area involve important trade-offs, and all face complex conceptual, ethical, legal, and professional challenges
    corecore